Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

George Ferguson, ${ }^{\text {a* }}$ Brian J. O^{\prime} Leary $^{\text {b }}$ and Trevor R. Spalding ${ }^{\text {b }}$
 ${ }^{\text {a }}$ Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1, and ${ }^{\mathbf{b}}$ Department of Chemistry, University College Cork, National University of Ireland, Cork, Ireland

Correspondence e-mail: crystals@uoguelph.ca

Key indicators
Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.035$
$w R$ factor $=0.079$
Data-to-parameter ratio $=18.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

The arsenic(V) compound $\operatorname{PhAs}(\mathrm{O})(\mathrm{OH})\left(\mathrm{OSiPh}_{3}\right)$

The structure of the arsenosilicate compound, hydroxooxo(phenyl)(triphenylsiloxy) arsenic $(\mathrm{V}), \mathrm{PhAs}(\mathrm{O})(\mathrm{OH})\left(\mathrm{OSiPh}_{3}\right)$ or $\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{OSi}\right) \mathrm{O}(\mathrm{OH})\right]$, is dimeric with the monomers joined by two As $-\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=$ As hydrogen-bonding sequences about an inversion centre, with $\mathrm{O} \cdots \mathrm{O}=$ 2.528 (3) \AA. The monomer unit has a tetrahedral $\mathrm{AsO}_{3} \mathrm{C}_{\mathrm{Ph}}$ entity. The As $-\mathrm{O}-\mathrm{Si}$ angle $\left[140.79(12)^{\circ}\right.$] is larger than any previously reported $\mathrm{As}^{\mathrm{V}}-\mathrm{O}-\mathrm{Si}$ angle in a molecular species. The three independent As-O bond lengths are 1.6551 (18), 1.6740 (18) and 1.7086 (17) \AA, respectively, for the $\mathrm{As}=\mathrm{O}$, $\mathrm{As}-\mathrm{OH}$ and $\mathrm{As}-\mathrm{OSiPh}_{3}$ bonds.

Comment

The small number of molecular silylarsenates, i.e. arsenic(V) silicates, which have been structurally characterized all contain terminal $\mathrm{As}^{\mathrm{v}}-\mathrm{OSiMe}_{3}$ units (Baier et al., 1992, $1993 a, b)$. The compounds are the silylated aminoarsenates $\left(\mathrm{Me}_{3} \mathrm{SiO}\right)_{2}(\mathrm{PhNH}) \mathrm{AsO}$, (I), and $\left(\mathrm{Me}_{3} \mathrm{SiO}\right)_{3} \mathrm{AsO}\left(\mathrm{Me}_{3} \mathrm{SiO}\right)_{3^{-}}$ AsNMe, (II), a triarsa(V)azene compound, $\left[\left(\mathrm{Me}_{3} \mathrm{SiO}\right)_{2} \mathrm{AsN}\right]_{3}$, (III), and a diarsenate(V) compound, $\left(\mathrm{Me}_{3} \mathrm{SiO}\right)_{8} \mathrm{As}_{4} \mathrm{O}_{6}$, (IV). Compounds (I) and (III) contain four-coordinate arsenic, (II) has five-coordinate arsenic and (IV) contains arsenic in both four- and six-coordination. Only in $\left(\mathrm{Me}_{3} \mathrm{SiO}\right)_{2}(\mathrm{PhNH})$ $\mathrm{AsO},(\mathrm{I})$, is there an $\mathrm{As}=\mathrm{O}$ bond present (Baier et al., 1993b). In an attempt to prepare $\mathrm{PhAs}(\mathrm{O})\left(\mathrm{OSiPh}_{3}\right)_{2}$ via a dehydration reaction, phenylarsonic acid was reacted with triphenylsilanol in a 1:2 molar ratio (O'Leary, 1998). The reaction did not proceed as anticipated and successive crystallizations from a dichloromethane-ether-cyclohexane (1:1:4) solution afforded what we subsequently established to be the title compound $\mathrm{PhAs}(\mathrm{O})(\mathrm{OH})\left(\mathrm{OSiPh}_{3}\right),(\mathrm{V})$, and $\mathrm{Ph}_{3} \mathrm{SiOSiPh}_{3}$. When the reaction was repeated using a 1:1 molar ratio of phenylarsonic acid to triphenylsilanol, compound (V) was the only product obtained.

(V)

A search of the December 2003 release of the Cambridge Structural Database (Allen, 2002) shows that compound (V) is indeed a novel species and is the first structurally characterized silylarsenate containing both $\mathrm{As}-\mathrm{OSi}$ and $\mathrm{As}-\mathrm{OH}$ units. In the solid state, the structure is dimeric as shown in (V) with the monomers joined by two $\mathrm{As}-\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=\mathrm{As}$ hydrogen-bonding sequences about an inversion centre

Received 13 January 2004 Accepted 16 January 2004 Online 30 January 2004

Figure 1
A view of the dimer of (V) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Atom labels with suffix ' a ' represent the equivalent position $(1-x, 1-y$, $1-z$).
(Fig. 1). The monomers contain a central tetrahedral $\mathrm{AsO}_{3} \mathrm{C}_{\mathrm{Ph}}$ unit bound through one of the O atoms to a tetrahedral $-\mathrm{SiPh}_{3}$ group. Principal bond-length and angle data for (V) are given in Table 1.

The $\mathrm{As}-\mathrm{O}-\mathrm{Si}$ angle in (V) [140.79 (12) ${ }^{\circ}$] is larger than any previously reported $\mathrm{As}^{\mathrm{V}}-\mathrm{O}-$ Si angles, which range from 128.5 (4) to 136.0 (3) ${ }^{\circ}$ (Baier et al., 1992, 1993a,b). The As^{\vee} O_{Si} distance in (V) $[1.7086$ (17) \AA] lies within the range of the corresponding distances in the previously reported As^{V} containing compounds (I)-(IV) [1.680 (3)-1.780 (2) A]. The $\mathrm{As}^{\mathrm{III}}-\mathrm{O}_{\mathrm{Si}}$ distances in $\mathrm{PhAs}\left(\mathrm{OSiPh}_{3}\right)_{2}$, (VI) (Ferguson et al., 2004), are 1.758 (3) and 1.786 (3) \AA, and are significantly longer than the $\mathrm{As}^{\mathrm{V}}-\mathrm{O}_{\mathrm{Si}}$ distance in (V).

As expected, the As-OH bond in (V) [1.6740 (18) \AA] is significantly shorter than the $\mathrm{As}-\mathrm{O}_{\mathrm{Si}}$ bond $[1.7086$ (17) \AA] . The $\mathrm{As}=\mathrm{O}$ double bond in (V) $[1.6551$ (18) \AA] is close to the value of the $\mathrm{As}-\mathrm{OH}$ single bond and longer than the $\mathrm{As}=\mathrm{O}$ distance of 1.626 (3) \AA in the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded system $\left(\mathrm{Me}_{3} \mathrm{SiO}\right)_{2}(\mathrm{PhNH}) \mathrm{AsO}$, (I) (Baier et al., 1993b). A mean value of $1.661 \AA$ has been suggested for the $\mathrm{As}=\mathrm{O}$ distance (Allen et al., 1987).

The $\mathrm{Si}-\mathrm{O}_{\mathrm{As}}$ distance in (V) [1.6585 (18) \AA] is not unusual. Comparable distances in $\left(\mathrm{Me}_{3} \mathrm{SiO}\right)_{3} \mathrm{AsO}\left(\mathrm{Me}_{3} \mathrm{SiO}\right)_{3} \mathrm{AsNMe}$, (II), and $\left[\left(\mathrm{Me}_{3} \mathrm{SiO}\right)_{2} \mathrm{AsN}\right]_{3}$, (III), range from 1.646 (2) to 1.732 (6) \AA. The $\mathrm{Si}-\mathrm{O}_{\mathrm{As}}$ distances in $\mathrm{PhAs}\left(\mathrm{OSiPh}_{3}\right)_{2}$, (VI) (Ferguson et al., 2004), are 1.635 (3) and 1.641 (4) \AA, and are shorter than the $\mathrm{Si}-\mathrm{O}_{\mathrm{As}}$ distance in (V). The $\mathrm{As}-\mathrm{C}_{\mathrm{Ph}}$ bond length in (V) [1.891 (3) \AA] is relatively short, since a mean value of $1.922 \AA$ has been suggested for $\mathrm{As}-\mathrm{C}_{\mathrm{ar}}$ bonds in general, where the As atom is four-coordinate and C_{ar} is a C atom in an aromatic system (Allen et al., 1987). The As-C C_{ar} distance in $\mathrm{PhAs}\left(\mathrm{OSiPh}_{3}\right)_{2}$, (VI) (Ferguson et al., 2004), of 1.936 (5) \AA is significantly greater than the distance of 1.891 (3) \AA in (V). The $\mathrm{Si}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ distances in the SiPh_{3} units of (V) are normal.

The two $\mathrm{O}-\mathrm{As}=\mathrm{O}$ angles in (V), viz. $\mathrm{O} 1-\mathrm{As} 1-\mathrm{O} 2$ and $\mathrm{O} 2-\mathrm{As} 1-\mathrm{O} 3$ in Fig. 1, are 110.76 (10) and $114.05(10)^{\circ}$, and
do not agree within 3 s.u.; the $\mathrm{O} 1-\mathrm{As} 1-\mathrm{O} 3$ angle is notably smaller at $103.11(10)^{\circ}$. The three $\mathrm{O}-\mathrm{Si}-\mathrm{C}$ angles in (V) lie between 103.41 (11) and $110.96(11)^{\circ}$, whilst the range for the three $\mathrm{C}-\mathrm{Si}-\mathrm{C}$ angles is 110.40 (12) -111.37 (12) ${ }^{\circ}$.

The AsO-H. $\mathrm{O}=$ As hydrogen-bond data for (V) (Table 2) indicate the presence of moderately strong hydrogen bonding (Jeffrey, 1997). The hydrogen-bonding pattern is similar to that in (I), $\left(\mathrm{Me}_{3} \mathrm{SiO}\right)_{2}(\mathrm{PhNH})$ AsO. Like (V), the structure of (I) is dimeric, with the monomers connected via two AsN-HOO =As hydrogen bonds, but unlike (V), the monomers in (I) are not symmetry-related (Baier et al., 1993b). As expected, all phenyl rings take part in $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2) with phenyl rings of adjacent molecules to generate a three-dimensional network.

Experimental

For the synthesis of $\operatorname{PhAs}(\mathrm{O})(\mathrm{OH})\left(\mathrm{OSiPh}_{3}\right),(\mathrm{V})$, phenylarsonic acid $(2.009 \mathrm{~g}, 9.94 \mathrm{mmol})$ and triphenylsilanol $(2.747 \mathrm{~g}, 9.94 \mathrm{mmol})$ were added to 50 ml toluene in a Dean-Stark apparatus. The solution was heated at reflux for 10 h . Removal of toluene afforded a colourless solid which was crystallized from dichloromethane-heptane (1:3) to give crystals of (V) ($3.625 \mathrm{~g}, 79.2 \%$; m.p. 436-438 K). Found: C 62.9, $\mathrm{H} 4.9 \% ; \mathrm{C}_{24} \mathrm{H}_{21} \mathrm{AsO}_{3} \mathrm{Si}$ requires: C 62.6, H 4.6\%. FT-IR (KBr disc), $v_{\text {max }} \mathrm{cm}^{-1}: 1428(s), 1119(s), 956(s), 910(v s), 714(s), 699(s), 508(v s)$. ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$, p.p.m.): $8.95(s, 2 \mathrm{H}, \mathrm{OH}), 7.49-7.03$ (m , $40 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{As}$ and $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Si}\right) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, p.p.m.): 151.05; 136.22, 135.41, 131.00, 129.99, 129.27, 128.49, $127.49\left(\mathrm{SiC}_{6} \mathrm{H}_{5}\right.$ and $\left.\mathrm{AsC}_{6} \mathrm{H}_{5}\right)$. EIMS $m / z\left[M=\right.$ monomeric unit $\left[\operatorname{PhAs}(\mathrm{O})(\mathrm{OH})\left(\mathrm{OSiPh}_{3}\right)\right]: 460[M]$, $383[M-\mathrm{Ph}], 306[M-2 \mathrm{Ph}], 275\left[\mathrm{Ph}_{3} \mathrm{SiO}\right]$.

Crystal data

$\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{OSi}\right) \mathrm{O}(\mathrm{OH})\right]$	$Z=2$
$M_{r}=460.42$	$D_{x}=1.413 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo K α radiation
$a=8.3350(9) \AA$	Cell parameters from 25
$b=9.8193(8) \AA$	reflections
$c=14.8736(14) \AA$	$\theta=14.6-21.6^{\circ}$
$\alpha=89.948(6)^{\circ}$	$\mu=1.65 \mathrm{~mm}^{\circ}$
$\beta=74.391(9)^{\circ}$	$T=294(1) \mathrm{K}$
$\gamma=68.276(5)^{\circ}$	Lath, colourless
$V=1082.51(18) \AA^{\circ}$	$0.42 \times 0.38 \times 0.22 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\theta / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.549, T_{\text {max }}=0.702$
4751 measured reflections
4751 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.080$
$S=1.01$
4751 reflections
264 parameters
H-atom parameters constrained

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.413 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=14.6-21.6^{\circ} \\
& \mu=1.65 \mathrm{~mm}^{-1} \\
& T=294(1) \mathrm{K} \\
& \text { Lath, colourless } \\
& 0.42 \times 0.38 \times 0.22 \mathrm{~mm}
\end{aligned}
$$

> 3281 reflections with $I>2 \sigma(I)$
> $\theta_{\max }=27.0^{\circ}$
> $h=-10 \rightarrow 9$
> $k=0 \rightarrow 12$
> $l=-18 \rightarrow 19$
> 3 standard reflections \quad frequency: 120 min intensity decay: none
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0386 P)^{2}\right.$
$+0.0624 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e}^{\mathrm{A}}{ }_{\text {。 }}{ }^{-3}$
$\Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0044 (9)

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

As1-O1	$1.7086(17)$	Si1-O1	$1.6585(18)$
As1-O2	$1.6551(18)$	Si1-C21	$1.860(3)$
As1-O3	$1.6740(18)$	Si1-C31	$1.857(3)$
As1-C11	$1.891(3)$	Si1-C41	$1.862(3)$
O2-As1-O3	$114.05(10)$	O1-Si1-C21	$103.41(11)$
O2-As1-O1	$110.76(10)$	C31-Si1-C21	$111.04(11)$
O3-As1-O1	$103.12(10)$	O1-Si1-C41	$110.96(11)$
O2-As1-C11	$111.69(12)$	C31-Si1-C41	$110.40(12)$
O3-As1-C11	$110.74(12)$	C21-Si1-C41	$111.37(12)$
O1-As1-C11	$105.85(11)$	Si1-O1-As1	$140.79(12)$
O1-Si1-C31	$109.47(11)$		

Table 2
Hydrogen-bonding and short-contact geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\text {i }}$	0.82	1.73	2.528 (3)	164
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{Cg} 2^{\text {ii }}$	0.93	2.85	3.536	132
$\mathrm{C} 24-\mathrm{H} 24 \cdots \mathrm{Cg} 4^{\text {iii }}$	0.93	3.04	3.932	160
$\mathrm{C} 33-\mathrm{H} 33 \cdots \mathrm{Cg} 4^{\text {ii }}$	0.93	2.96	3.784	149
C35-H35 . $\mathrm{Cg}^{\text {2iv }}$	0.93	3.01	3.824	147
$\mathrm{C} 42-\mathrm{H} 42 \cdots \mathrm{Cg} 1^{\mathrm{v}}$	0.93	3.14	3.946	146

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $x-1, y, z$; (iii) $x, 1+y, z$; (iv) $1-x, 2-y,-z$; (v) $1+x, y, z . \operatorname{Cg} 1$ to $C g 4$ are the centroids of the phenyl rings Cn1Cn6 ($n=1-4$), respectively.

Peaks consistent with the H atoms were visible in difference maps and all H atoms were subsequently included as riding atoms, with $\mathrm{O}-$ $\mathrm{H}=0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$, and $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: SET4 and CELDIM (Enraf-Nonius, 1992); data reduction: DATRD2 in NRCVAX94 (Gabe et al., 1989); program(s) used to solve structure: NRCVAX94 via Patterson heavy-atom method; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and WinGX (Farrugia, 1999); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Baier, M., Bissinger, P. \& Schmidbaur, H. (1992). Chem. Ber. 125, 373-376.
Baier, M., Bissinger, P. \& Schmidbaur, H. (1993a). Chem. Ber. 126, 351-354.
Baier, M., Bissinger, P. \& Schmidbaur, H. (1993b). Organometallics, 12, 35273530.

Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Ferguson, G., O'Leary, B. \& Spalding, T. R. (2004). Acta Cryst. E60, m118m120.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

O'Leary, B. J. (1998). PhD thesis, University College, Cork, Ireland. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

